Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation
نویسنده
چکیده
We investigate the dynamics and control of a nonlinear oscillator that is described mathematically by a Variable Order Differential Equation (VODE). The dynamic problem in question arises from the dynamical analysis of a variable viscoelasticity oscillator. The dynamics of the model and the behavior of the variable order differintegrals are shown in variable phase space for different parameters. Two different controllers are developed for the VODEs under study in order to track an arbitrary reference function. A generalization of the van der Pol equation using the VODE formulation is analyzed under the light of the methods introduced in this work.
منابع مشابه
A Linear Approach to the Control of Vortex Induced Vibrations of Circular Cylinders with a 2-D Van der Pol Model for Structural Oscillator
In the present paper, a new 2-D Van der Polstructural oscillator model is introduced for the vortex induced vibrations of circular cylinders.The main purpose of this task is to control the recently introduced model by means of modern control definitions in state space. In order to control the system, the whole model is linearized about its equilibrium point by deriving state-space matrices. The...
متن کاملA new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition method
In this article, a new method is introduced to give approximate solution to Van der Pol equation. The proposed method is based on the combination of two different methods, the spectral Adomian decomposition method (SADM) and piecewise method, called the piecewise Adomian decomposition method (PSADM). The numerical results obtained from the proposed method show that this method is an...
متن کاملAn Inverse Optimality Method to Solve a Class of Optimal Control Problems
This paper presents an inverse optimality method to solve the Hamilton-JacobiBellman equation for a class of nonlinear problems for which the cost is quadratic and the dynamics are affine in the input. The method is inverse optimal because the running cost that renders the control input optimal is also explicitly determined. One special feature of this work, as compared to other methods in the ...
متن کاملA new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation
In this paper, an efficient and accurate computational method based on the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for solving a class of nonlinear multi-order fractional differential equations (NMFDEs). To do this, a new operational matrix of fractional order integration in the Riemann-Liouville sense for the CWs is derived. Hat functions (HFs) and the collo...
متن کاملAn Approximate Solution for a Modified Van der Pol Oscillator
In this paper, a Van der Pol oscillator containing a periodic oscillator is considered. A simple and effective iteration procedure to search the solution of the modified Van der Pol oscillator equation is proposed. This procedure is a powerful tool for determination of periodic solution of a non-linear equation of motion. The solutions obtained using the present iteration procedure are in good ...
متن کامل